

Search for Long-Lived Particles at CMS

Jeff Temple
University of Maryland
(On behalf of the CMS Collaboration)

Supersymmetry 2011 28 August – 2 September FNAL

Heavy Stable Charged Particles (HSCP)

- Predicted by many SM extensions
 - GUTS, hidden valley, split SUSY...
 - Focus on production via strong interaction
 - gluinos and stops form R-hadrons (gg, gqq, gqqq, tq, tqq,etc.)
 - staus (mGMSB) produced directly or through gluino/stop decays

Heavy

- □ m > 100 GeV/c²
- β $< \sim$ 0.9: large TOF
- Stable
 - Passes through muon system
 - Or decays in calorimeter!
- Charged
 - Large dE/dx
 - EM energy loss

Simulating HSCP Production

- PYTHIA used for event generation
 - Various stop, gluino, stau masses
- GEANT4 simulates interactions of R-hadrons with CMS
- Various interaction models considered
 - charge suppression: R-hadrons with a gluino or bottom squark emerge as neutral particles
 - Gluino-> R-gluonball hadronization fraction f
 - f = 0.1, f = 0.5
 - "Cloud model" for R-hadron/matter interactions

Complementary Search Strategies

- "Direct Detection" of HSCPs
 - Search within 25-ns collision crossing (BX) or subsequent crossing (BX+1)
 - □ Large p_T , dE/dx in tracker
 - Long TOF as measured by muon system
 - In charge suppression scenario, neutral R-hadron doesn't interact with muon detectors

- "Stopped" HSCPs
 - $\beta < \sim 0.4$
 - HSCP stops in hadron calorimeter (HCAL)
 - HSCP decay produces large HCAL deposit outside collision window

Direct HSCP Search

CMS PAS EXO-11-022

Detecting tracker-only Direct HSCPs

dE/dX estimator:

$$I_{h} = \left(\frac{1}{N} \sum_{i=1}^{N} c_{i}^{-2}\right)^{-1/2}$$

- □ N=number of silicon hits
- c_i= charge/length of ith measurement

MIP estimator:

$$I_{as} = \frac{3}{N} \times \left[\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i \times \left(P_i - \frac{2i - 1}{2N} \right)^2 \right] \right]$$

 P_i = probability for MIP to produce charge <= ith measurement

Trigger: MET > 150 GeV

□MET calculated from PF jets (anti-k_T clustering)

Track selection:

- $|\eta^{\text{INNER}}| < 1.5; \chi^2/\text{d.o.f} < 5$
- $p_T^{INNER} > 35 \text{ GeV/c}$
- $\sigma(p_T^{INNER})/p_T^{INNER} < 0.25$
- $d_z^2 + d_{xv}^2 < 4 \text{ cm}^2$
- Isolated:
 - Σ p_τ(0<ΔR<0.3)<50 GeV/c
 - Σ ECAL(Δ R<0.3)/ p_T INNER< 0.3
- $I_h > 3 \text{ MeV/cm}$

Detecting tracker+muon Direct HSCPs

- Require reconstructed muon matched to high-p_⊤ track
 - Measure β from TOF: $1/\beta=1+c(\delta t)/L$
 - $-1/\beta > 1$, $\sigma(1/\beta) < 0.07$

Trigger: muon $p_T>30$ GeV/c L1 trigger checks BX, BX+1

Track selection:

- Same as tracker only, but with loosened isolation cuts
 - Σ p_T(0<ΔR<0.3)<100 GeV/c
 - Σ ECAL(Δ R<0.3)/ p_T^{INNER} < 0.6

SUSY 11, 8/28/11-9/2/11 J. Temple 7

Direct HSCPs: Search Strategy

- Generate PYTHIA samples for various masses
 - \Box \tilde{t} , \tilde{g} : 130-1100 GeV/c²
 - □ τ̄: 100-500 GeV/c²
- Calculate measured mass for each track
 - I_b=Km²/p²+C
 - Approximates Bethe-Bloch for
 - $0.4 < \beta < 0.9$
 - K,C parameters taken from data
- Counting experiment for each HSCP mass
 - Choose p_T, I_{as} (and 1/β) cut thresholds to minimize 95% CL upper limit

Direct HSCPs: Backgrounds

- Background from MIPs
- p_T, dE/dx measurements uncorrelated
- Estimate signal contamination from MIPs using p_T vs. I_{as} distribution
- For tracker+muon selection, use p_T, I_{as}, and 1/β

Direct HSCPs: tracker-only Results

- **CMS PAS EXO-11-022**
- ■1.09 fb⁻¹ of 2011 data
- No excess seen

Gluino mass limits:

- f = 0.1: 899 GeV/c²
- □ f = 0.1, charge suppression: 808 GeV/c²
- f = 0.5: 839 GeV/c²

Stop mass limits:

- f = 0.1: 620 GeV/c²
- f = 0.1, charge suppression: 515 GeV/c²

Direct HSCPs: tracker+muon Results

- **CMS PAS EXO-11-022**
- ■1.09 fb⁻¹ of 2011 data
- No excess seen

Mass limits (f = 0.1):

gluino: 885 GeV/c²

stop: 829 GeV/c²

stau: 293 GeV/c²

Stopped HSCP Search

CMS PAS EXO-11-020

Triggering on Stopped HSCPs

Stopped HSCP decay signature:

Stopped HSCP trigger requirements:

- □ large energy deposit in HCAL \longleftrightarrow □ Jet $E_T>50$ GeV; $|\eta_{jet}|<3.0$
 - Not associated with halo Veto on beam halo (muon endcap) trigger within ± 1 BX
- - Live time decreases as number of filled bunches increases

N _{bunches}	$N_{collision}$ (in CMS)	flive
228	214	85%
336	322	78-79%
480	424	68%
624	598	61%
768	700	50-51%
912	874	44%
1092	1042	33%
1104	1042	32%
1236	1180	25%

Stopped HSCP: Simulation

- 3564 bunches orbit
- 25 ns per bunch
- (up to) 2808 filled bunches

- HSCP decays do not need to occur within collision BX
- Toy MC used to produce distribution of decay times
 - \Box Varies with HSCP lifetime, τ
 - Varies with LHC bunch structure for a given fill
- Produces "effective integrated luminosity" for a given τ

Stopped HSCP: HCAL Noise Background

- Sporadic noise observed in HCAL barrel and endcap
 - Ion Feedback: single HCAL channel
 - HPD noise: up to 18
 channels in single φ slice
 - - $\Delta \phi \sim 0.35$, $\Delta \eta \sim 1.5$

Identify HCAL noise through geometry and pulse shapes of energy deposits

Stopped HSCP: Background estimation

Background sources:

HCAL Noise
Beam-related (Halo, beam-gas, ...)
Cosmic Rays

Measure background rate from 2010 data

(Low instantaneous luminosity)

Stopped HSCP: Event Selection

Noise-Related Cuts

Background rates measured in 2010B dataset

- Signal efficiency quoted for gluino mass = 500 GeV/c², neutralino mass = 400 GeV/c²
- Efficiency relative to events in which at least one gluino stops within CMS

Stopped HSCP: Analyses

Counting Experiment

- Consider HSCP lifetimes τ from 75 ns 10⁶ s
- Count events in sensitive time window
- τ<89 μs: window=1.3τ
- Each event assumed to come from current fill

Lifetime	$L_{eff}(pb^{-1})$	Expected Bg	Observed
75 ns	4.3	0.11 ± 0.05	0
100 ns	12.5	0.35 ± 0.14	0
$1 \mu s$	139	3.3 ± 1.3	4
10 μs	352	10.1 ± 4.1	9
$30 \ \mu s - 10^3 \ s$	360	10.4 ± 4.2	10
$10^4 \mathrm{s}$	268	10.4 ± 4.2	10
$10^{5} { m s}$	65	10.4 ± 4.2	10
$10^6 \mathrm{s}$	7.5	10.4 ± 4.2	10

Observed events for various HSCP lifetimes

Time Profile Analysis

- For τ <0.7 ms, PDF of decay signal as a function of BX is produced
- Background PDF is flat

Signal PDF distribution for one Filling scheme, assuming τ =1 μ s

Stopped HSCP: Lifetime and Mass Limits

95% confidence level upper limit for cross section (x HSCP stopping probability) vs τ

- Mass limit, assuming:
 - Cloud model of R-hadron interactions
- Excludes gluinos < 601 GeV/c², stops < 337 GeV/c²</p>

Summary

- Search for heavy stable charged particles performed with ~ 1 fb⁻¹ of 2011 CMS data
- No evidence for HSCPs seen
- New upper limits set for both direct and stopped HSCP searches

Backup Slides

Backup: Distributions for direct tracker+muon HSCPs

Backup: Direct HSCP Systematics

Source of Systematic Error	Relative Uncertainty (%)
Signal efficiency	
Trigger efficiency	5
Muon reconstruction efficiency	5
Track reconstruction efficiency	< 2
Track momentum scale	< 5
Ionization energy loss scale (I_{as})	[5, 10]
Ionization energy loss scale (I_h)	< 1
Total uncertainty on signal acceptance	[10, 15]
Expected background	10
Integrated luminosity	6

- [5]: *JHEP* **03** (2011) 024, arXiv:1101.1645
- [10]: Phys. Lett B76 (1978) 575.
- [15]: JHEP 05 (2006) 026, arXiv:hep-ph/0603175

Backup: Stopped HSCP Uncertainties

Source	Uncertainty
Background statistics	40%
Jet Energy Scale	7%
Luminosity	6%
Trigger Efficiency	_
Reconstruction Efficiency	_
Energy Loss Models	See following slide

Backup: Stopped HSCP Limits

CMS Preliminary 2011

 $L_{inst}^{max} = 1.3 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

Expected: 10 µs - 1000 s Counting Exp.

Expected ±1σ: 10 μs - 1000 s Counting Exp.

Expected ±2σ: 10 μs - 1000 s Counting Exp.

550

600

650 $m_{\tilde{a}} [GeV/c^2]$

25

m_r [GeV/c²]

L dt = 886 pb⁻¹

 $\widetilde{\mathfrak{g}}\widetilde{\mathfrak{g}})\times\mathsf{BR}(\widetilde{\mathfrak{g}}\to\mathfrak{g}\widetilde{\chi}^0)$ [pb]

- 100% BR to neutralino
- M(gluino)-M(neutralino)=100 GeV/c²

Background: Stopped HSCP Time Profiles for Various Fill Schemes

SUSY 11, 8/2

Background: Previously Published Limits

CMS 2010 direct, stopped searches

Gluino exclusion: m<398, 370 GeV/c²

arXiv:1101.1645

arXiv:1011.5861

D0 gluino exclusion: m<270 GeV/c2 (50 GeV/c² neutralino)

arXiv:0705.0306

ATLAS direct search gluino exclusion: m<562-586 GeV/c²

arXiv:1103.1984

(also

arXiv:1106.4495)

I. Temple

Mass [GeV]